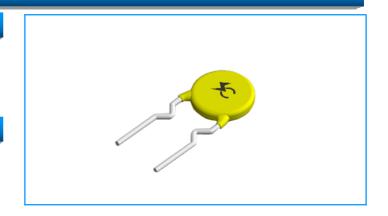


Radial Lead Resettable Polymer PTCs

SC60-025CW0A

Description


SC60-025CW0A radial leaded PTC is designed to provide over-current protection for low voltage (\leq 30V) applications where space is not a concern and resettable protection is preferred.

Features

- Cured, flame retardant epoxy polymer meets UL 94V-0 requirements
- 60V operating voltage
- u Fast time-to-trip
- u RoHS compliant, Lead-Free and Halogen-Free

Applications

- u Computers and peripherals
- Power ports
- u Motor protection
- u Automotive application
- USB hubs ,ports and peripherals
- General electronics

Electrical Parameters

Part Number	I hold (A)	I trip (A)	V _{max} (Vdc)	I _{max} (A)	P _{dtyp.} (W)	Maximum Time To Trip		Resistance		
						Current (A)	Time (Sec.)	R _{min} (Ω)	R _{max} (Ω)	R _{1max} (Ω)
SC60-025CW0A	0.25	0.50	60	40	0.45	0.75	10.0	1.1	2.2	3.0

I $_{\text{hold}}$ = Hold current: maximum current device will pass without tripping in 25°C still air.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

Temperature Derating Chart - I hold (A)

Ambient Temperature	-40 ℃	-20 ℃	0℃	25 ℃	40 ℃	50℃	60℃	70℃	85 ℃
Working Current (A)	0.39	0.34	0.30	0.25	0.20	0.18	0.16	0.14	0.10

I _{trip}= Trip current: minimum current at which the device will trip in 25°C still air.

V _{max}= Maximum voltage that can be safely placed across a device in its tripped state under specified fault conditions.

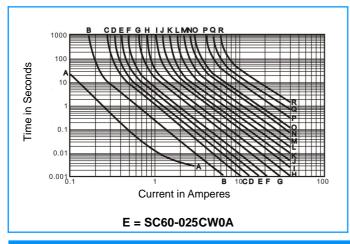
I max = Maximum fault current device can withstand without damage at rated voltage (Vmax)

 $P_{\text{dtyp.}}$ = Power dissipated from device when in the tripped state at 25°C still air.

R min= Minimum resistance of device in initial (un-soldered) state.

R _{max}= Maximum resistance of device in initial (un-soldered) state.

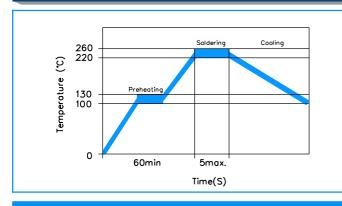
R _{1max}= Maximum resistance of device at 25°C measured one hour after tripping.




Radial Lead Resettable Polymer PTCs

SC60-025CW0A

Average Time Current Curves


Temperature Derating Curve

Test Procedures and Requirement

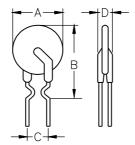
Test	Test Conditions	Accept/Reject Criteria			
Resistance	In still air @25±2°C	$R_{min} \leq R \leq R_{max}$			
Hold Current	60 min, at I _{hold} , In still air @25±2°C	No trip			
Time to Trip	Specified current, V _{max} , @25±2°C	T≤Maximum Time To Trip			
Trip Cycle Life	V _{max} , I _{max} ,100 cycles	No arcing or burning			
Trip Endurance	Vmax,24hours	No arcing or burning			

Soldering Parameters

Pre-Heating Zone	Refer to the condition recommended by the manufacturer. Max. ramping rate should not exceed 4°C/Sec				
Soldering Zone	Max. solder temperature should not exceed 260°C				
Cooling Zone	Cooling by natural convection in air				

Physical Specifications

Lead Material	0.05-0.4A Tin-plated Copper clad steel 0.5-3.75A Tin-plated Copper					
Soldering Characteristics	Solder ability per MIL-STD-202, Method 208E					
Insulating Material	Cured, flame retardant epoxy polymer meets UL 94V-0 requirements.					
Device Labeling	Marked with 'SC', voltage, current rating					



Radial Lead Resettable Polymer PTCs

SC60-025CW0A

Dimensions (Unit: mm)

Part Number	Α	В	С	D	Lead (dia)	Packaging (Bulk Pack)	
rait Nullibel	Max.	Max.	Тур.	Max.	Leau (ula)		
SC60-025CW0A	6.0	11.3	5.1±0.5	3.1	0.5	1000 PCS	

Warning

- **u** This product should not be used in an application where the maximum interrupt voltage or maximum interrupt current in a fault condition, Operation beyond the maximum rating or improper use may result in device damage and possible electrical arcing and flame.
- **u** A PPTC device is not a fuse, It is a nonlinear thermistor that limits current, Because under a fault condition all PPTC devices go into a high resistance state but not open circuit hazardous voltage may be present at PPTC.
- **u** The devices are intended for protection against occasional over-current or over-temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events.
- **u** In most application, power must be removed and the fault condition cleared in order to reset a PPTC device.
- **u** PPTC devices are not recommended to be installed in applications where the device is constrained such that its PPTC properties are inhibited, for example in rigid potting materials or Add devices surface coating, Bundled devices ontology, which lack adequate clearance to accommodate device expansion.
- **u** Contamination on of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices. For example, Organic solvents to cleaning.